Body composition predicted with a Bayesian network from simple variables.
نویسندگان
چکیده
The relative contributions of fat-free mass (FFM) and fat mass (FM) to body weight are key indicators for several major public health issues. Predictive models could offer new insights into body composition analysis. A non-parametric equation derived from a probabilistic Bayesian network (BN) was established by including sex, age, body weight and height. We hypothesised that it would be possible to assess the body composition of any subject from easily accessible covariables by selecting an adjusted FFM value within a reference dual-energy X-ray absorptiometry (DXA) measurement database (1999-2004 National Health and Nutrition Examination Survey (NHANES), n 10 402). FM was directly calculated as body weight minus FFM. A French DXA database (n 1140) was used (1) to adjust the model parameters (n 380) and (2) to cross-validate the model responses (n 760). French subjects were significantly different from American NHANES subjects with respect to age, weight and FM. Despite this different population context, BN prediction was highly reliable. Correlations between BN predictions and DXA measurements were significant for FFM (R2 0·94, P < 0·001, standard error of prediction (SEP) 2·82 kg) and the percentage of FM (FM%) (R2 0·81, P < 0·001, SEP 3·73 %). Two previously published linear models were applied to the subjects of the French database and compared with BN predictions. BN predictions were more accurate for both FFM and FM than those obtained from linear models. In addition, BN prediction generated stochastic variability in the FM% expressed in terms of BMI. The use of such predictions in large populations could be of interest for many public health issues.
منابع مشابه
Provide a Predictive Model to Identify People with Diabetes Using the Decision Tree
Background: Today, in most hospitals in Iran, there is an extensive database of patient characteristics that includes a large amount of information related to medical, family and medical records. Finding a knowledge model of this information can help to predict the performance of the medical system and improve educational processes. Methods: Data mining techniques are analytical tools that are...
متن کاملA Proposed Model to Identify Factors Affecting Asthma using Data Mining
Introduction: The identification of asthma risk factors plays an important role in the prevention of the asthma as well as reducing the severity of symptoms. Nowadays, the identification process can be performed using modern techniques. Data mining is one of the techniques which has many applications in the fields of diagnosis, prediction, and treatment. This study aimed to identify the effecti...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملExtracting Material Information from the CT Numbers by Artificial Neural Networks for Use in the Monte Carlo Simulations of Different Tissue Types in Brachytherapy
Background: The artificial neural networks (ANNs) are useful in solving nonlinear processes, without the need for mathematical models of the parameters. Since the relationship between the CT numbers and material compositions is not linear, ANN can be used for obtaining tissue density and composition.Objective: The aim of this study is to utilize ANN for determination of the composition and mass...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The British journal of nutrition
دوره 105 8 شماره
صفحات -
تاریخ انتشار 2011